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Solution of the local polaron model with a boson continuum

Michele Cini† and Massimiliano Cuozzo‡
INFM, Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica,
1-00133 Roma, Italy

Received 19 April 1996, in final form 14 August 1996

Abstract. We study the zero-temperature Green function for the local polaron model that
describes the interaction of an electron in an empty band with a boson continuum; the coupling
takes place at one site in the lattice. To this end, we propose a new exact approach which consists
in two steps: first, the problem is reduced to the solution of an infinite linear algebraic system of
recursion equations by the method of excitation amplitudes; then, a systematic expansion of the
solution is generated by Feenberg’s formalism. Previously, the problem had been solved exactly
in the narrow-band limit; otherwise, the solution was achieved for one or a few boson modes.
Here we consider a boson continuum and obtain an infinite expansion of the self-energy in
terms of the dressed Green function. In this case, the recursive, continued-fraction technique is
equivalent to self-consistent perturbation theory. The results are illustrated by selected numerical
examples, and show that the satellites are much more sensitive to the boson dispersion than the
main line.

1. Introduction

The local polaron model describes a single particle (e.g. an electron or hole) which evolves
in an empty band and interacts with a boson field only when a particular ‘electronic’ state
(e.g. a site in the lattice) is populated. The Hamiltonian of this model isH = HF +HB +HI ,
where

HF = εac
†
aca +

∑
k

εkc
†
kck +

∑
k

[Vkac
†
kca + HC] (1)

is a Fano model Hamiltonian,c†
a is the creation operator of the local state,c

†
k creates a band

state,εa andεk are the energy levels of the local state and of the band states;

HB =
∑

q

ωqb
†
qbq (2)

describes the free-boson field, and the field–electron interaction is of the local type:

HI = c†
aca

∑
q

gq(b
†
q + bq). (3)

For Vka = 0, when the band reduces to a core-like level, this can be solved exactly as
shown by Langreth [1]. A similar model with dispersionless bosons was first introduced by
Hewson and Newns [2] in the context of a theory of image force effects in chemisorption,
and the bosons were surface plasmons. The present model was introduced by one of us [3]
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in a theory of photoemission spectra from valence states. The spectrum is related to the
density of states which can be obtained from the local Green’s function

G(ω) ≡ 〈a| 1

ω − H + iδ
|a〉 (4)

where|a〉 = c+
a |0〉. The model (1)–(3) allows us to study the competition between screening

(which takes place in a time of the order of the inverse boson frequencies) and band
diffusion, whose time-scales are determined by the inverse band width, and by the analytic
structure (e.g. Van Hove singularities) of the band profile. The exact solution was found
by one of us [3] for any shape of the electronic level, subject to the condition that all of
the bosons have the same frequencyω0. The recursion method of excitation amplitudes,
which was introduced to solve this problem, has been applied in a variety of contexts [4],
and particularly to non-linear optics [5], when the relevant bosons are photons; its main
advantage is that it is non-perturbative and electron–boson interactions are automatically
treated to all orders. Also, it includes all of the electronic degrees of freedom from the
start, since it givesG(ω) directly in terms of the propagatorG0 of HF . For a class of
problems, it is much more rewarding than the standard techniques. The simple, closed
exact solution of [3] was in fact reproduced by the standard perturbation methods [6], but
is much more difficult to derive in that way. However, the application of the excitation
amplitude approach was limited to problems involving a few boson modes because otherwise
the solution of the recurrence equations becomes too demanding.

Yet, the case of a boson continuum is physically very interesting, and it is clear that it
can lead to qualitatively different phenomena. We just mention that in the continuum case
the bosons have a group velocity, and therefore there is a new time-scale in the problem. In
the present paper, we wish to propose a method for overcoming that limitation, and dealing
with a boson continuum—that is, with a boson mode having dispersion in frequency.

2. Excitation amplitudes

Let us introduce the excitation amplitudes, defined by

9(q1, q2, . . . , qN , ω) ≡ 〈a|bq1bq2 · · · bqN

1

ω − H + iδ
|a〉. (5)

By the method of excitation amplitudes one can reduce the problem exactly to an infinite
set of linear recurrence equations. We refer the reader to reference [3] for the derivation.
The interacting propagator, which coincides with the zeroth amplitude, is given by

G(ω) = 9(ω) = G0(ω)

[
1 +

∑
q

gq9(q, ω)

]
. (6a)

Here,

G0(ω) ≡ 〈a| 1

ω − HF + iδ
|a〉

is the non-interacting local Green function which we consider known. The general
recurrence relation is

9(q1, q2, . . . , qn, ω) = G0(ω − ωq1 − ωq2 − · · · − ωqn
)

×
[
gq19(q2, . . . , qn, ω) + gq29(q1, q3, . . . , qn, ω) + · · ·
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+ gqn
9(q1, q2, . . . , qn−1, ω) +

∑
q ′

gq ′9(q1, q2, . . . , qn, q
′, ω)

]
. (6b)

A clear advantage of this approach is that of expressingG in terms ofG0, which is already
fully dressed by the hopping interactionsV .

If ωq ≡ ω0 is independent ofq, equation (6) is solved by introducing the quantities

8k(ω) =
∑

q1···qk

gq1gq2 · · · gqk
9(q1, q2, . . . , qk, ω)

and setting

g2
0 =

∑
q

g2
q.

In terms of the8k the system becomes tridiagonal and thus the solution is a continued
fraction [3]:

G(ω) = G0(ω)

1 − g2
0G0(ω)G0(ω − ω0)

1 − 2g2
0G0(ω − ω0)G0(ω − 2ω0)

1 − 3g2
0G0(ω − 2ω0)G0(ω − 3ω0)

1 − 4g2
0G0(ω − 3ω0)G0(ω − 4ω0)

1 − · · ·.

(7)

The same method and solution apply if there is just one mode of frequencyω0 and
coupling g0. In the presence ofN = 2 or N = 3 boson modes, the set (6b) can be
resolved along similar lines, in terms of matrix continued fractions [4]. However, the
amount of computation involved grows very quickly with the number of modes. We wish
to show below that some simplicity is regained in theN → ∞ limit, which is the case of a
continuous boson dispersion law. To this end, we find it expedient to rephrase the set (6b)
in a different form. Let us start with a numerable set of modes, and define9l1,l2,...,ln (ω) as
the amplitude which hasli boson modes with energyωi in its argument;9 ≡ 0 if any of
the li are negative. Using these new definitions the system becomes

G(ω) = 90,0,...,0(ω) = G0(ω)[1 + gq191,0,...,0(ω) + gq290,1,...,0(ω) + · · ·
+ gqn

90,...,0,1(ω)] · · ·
9l1,l2,...,ln (ω) = G(ω − l1ωq1 − l2ωq2 − · · · − lnωqn

)[gq19l1+1,l2,...,ln (ω)

+ gq29l1,l2+1,...,ln (ω) + · · · + gqn
9l1,l2,...,ln+1(ω) + l1gq19l1−1,l2,...,ln (ω)

+ l2gq29l1,l2−1,...,ln (ω) + · · · + lngqn
9l1,l2,...,ln−1(ω)] · · · . (8)

This rephrasing explicitly shows the permutation symmetry of the amplitudes with respect
to their bosonic indices, and, for example,9(q1, q2, ω) and9(q2, q1, ω) are seen to be the
same thing, namely91,1,0,...,0(ω).

3. Feenberg expansion

3.1. Self-energy

A systematic expansion for the solution of linear algebraic problems was proposed by
Feenberg [7, 8] and is summarized in appendix 1. A more complete account of Feenberg’s
method and its applications to atomic physics was given by Swain [9]. IfA is anM × M

matrix, let A = det(A) and let Ai be the determinant obtained fromA by taking away
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the ith row and column; similarly denote byAij that obtained by taking away theith and
j th rows and columns, and so on. By definition,A123···M = 1. The ith component of the
solution of a systemAx = b is

xi = bi

Di

−
∑

j

∗ aij bj

Dij

+
∑
jk

∗ aij ajkbk

Dijk

−
∑
jkl

∗ aij ajkaklbl

Dijkl

− · · · (9)

where the asterisk on the summation means that the summation indices must be different
from each other and from any other indices appearing in the summand,

Di ≡ A

Ai

Dij ≡ A

Aij

and so on. Each contribution to a
∑∗ is called anirreducible process(see appendix 1).

In (8), only the first component ofb is non-vanishing, and by solving forx0 ≡ G(ω) we
obtain

G(ω) = G0(ω)

D0
. (10)

In Feenberg’s method one is not forced to write down the matrixA explicitly; all that
we need is to know the non-vanishingaij connecting a given entry to all of the others.
To clarify this point let us consider the amplitude92,0,...,0(ω). This is only linked to
93,0,...,0(ω), to 91,0,...,0(ω) and to92,...,1,...,0(ω) (considering all of the possible positions of
1). For example, it is not linked to90,...,2,...,0(ω) or to 90,...,1,...,2,...,0(ω). In general, a given
state can only be linked to those with one boson more or one boson less. Thus it is better
to work referring only to the population numbers{li} rather than to a particular base, and
a slight change of notation is useful. Let us think of the excitation amplitude{li} as the
‘state’ |j〉 in the following way:

9l1,l2,...,ln (ω) ≡ |l1, l2, . . . , ln〉 ≡ |{lj }〉 ≡ |j〉.
Let us write90,0,...,0(ω) ≡ |0〉. Thus aij is the matrix element connecting the ‘state’|i〉
and the ‘state’|j〉—that is, the matrix element which links the amplitude with population
number{li} to the amplitude with population number{lj }.

The D-quantities can be expanded in a similar fashion toxi . Let us write out the first
terms ofD0:

D0 = 1 −
∑

j

∗ a0j aj0

D0
j

−
∑
j,k,l

∗ a0j ajkaklal0

D0
jkl

−
∑

j,k,l,m,n

∗ a0j ajkaklalmamnan0

D0
jklmn

− · · · . (11)

The arguments of the sums are products of matrix elements which have the same initial
and final index ‘0’ (in this sense we call them ‘loops’) and there are only products with an
even number of matrix elements. Clearly,a0j = G0(ω) for all of the possible states|j〉
linked to |0〉. Thus,

D0 = 1 − G0(ω)

[∑
j

∗ aj0

D0
j

−
∑
j,k,l

∗ ajkaklal0

D0
jkl

−
∑

j,k,l,m,n

∗ ajkaklalmamnan0

D0
jklmn

− · · ·
]
. (12)

Introducing

6(ω) =
∑

j

∗ aj0

D0
j

−
∑
j,k,l

∗ ajkaklal0

D0
jkl

−
∑

j,k,l,m,n

∗ ajkaklalmamnan0

D0
jklmn

− · · · (13)

we may writeD0 = 1 − G0(ω)6(ω) and using (12) we get Dyson’s equation:

G(ω) = G0(ω)

1 − G0(ω)6(ω)
.

Thus,6 is the proper self-energy.
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3.2. Rules for the loop expansion

Explicitly, equation (13) reads

6(ω) =
∑
qj

∗
g2

qj

G0(ω − ωqj
)

D0
ωqj

+
∑
qj ,qk

∗
g2

qj
g2

qk

G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)

D0
ωqj ,ωqj +ωqk,ωqk

+ · · · (14)

and can be continued by applying Feenberg’s rules. The expansion is the sum of the
contributions of loops that begin and end with the|0〉 state, and represent irreducible
processes. During their ‘life’ the loops may visit only an odd number of intermediate
states, due to the presence of an odd number of matrix elements in the definition of6. The
rules for the contribution of each loop to the self-energy are as follows.

(1) For each intermediate state, include a propagator

G0

(
ω −

∑
j

ljωj

)
wherelj is the occupation of the bosonj in the intermediate state.

(2) Include a factorg2
q for every switched-on boson mode with energyωq .

(3) Divide the contribution of every loop by a FeenbergD where the high index is ‘0’
and the low indices depend on the states visited by the loop.

(4) A numerical factorfqj ,qk,ql ,... must be included; this arises according to the above
discussion from thel-factors in (8) which are different from unity when there are several
equal bosons switched on. We can dispense with a general expression for thesef since
they will disappear in the continuum limit (see below).

(5) Sum over all of the indices of the bosons of the intermediate states.

In order to analyse the expansion, we need a few definitions. A loop can be represented
graphically as a series of dots, one for each boson mode which is turned on or off in the
irreducible process. A part of a loop where all nodes represent bosons which are turned
on (off) is an ‘ascending’ (‘descending’) part. Thus, we can split the set of all loops into
two distinct classes, as follows. ‘Arch loops’ consist of one ascending part, followed by a
descending part. We call all of the others ‘zigzag loops’.

For example, the contribution65 due to the terms which visit five intermediate states
comes from the graphs of figure 1, where 1(a), 1(b) and 1(c) are arch contributions, and
1(d) is a zigzag one. The mathematical contributions are

1(a) G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqj

− ωqk
− ωql

)

× G0(ω − ωqk
− ωql

)G0(ω − ωql
)

1(b) G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqj

− ωqk
− ωql

)

× G0(ω − ωqk
− ωql

)G0(ω − ωqk
)

1(c) G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqj

− ωqk
− ωql

)

× G0(ω − ωqj
− ωql

)G0(ω − ωql
)

1(d) G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)G0(ω − ωqk
− ωql

)G0(ω − ωql
).

The D-denominators read

1(a) D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωql



9016 M Cini and M Cuozzo

Figure 1. Irreducible processes which contribute to65. Note thatqk, ql and qj must all be
different.

1(b) D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωqk

1(c) D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqj +ωql ,ωql

1(d) D0
ωqj ,ωqj +ωqk,ωqk,ωqk+ωql ,ωql

.

Finally, we get

65(ω) =
∑

qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
fqj ,qk,ql

G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqj

− ωqk
− ωql

)

×
[

G0(ω − ωqk
− ωql

)G0(ω − ωql
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωql

+ G0(ω − ωqk
− ωql

)G0(ω − ωqk
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωqk

+ G0(ω − ωqj
− ωql

)G0(ω − ωql
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqj +ωql ,ωql

]
+

∑
qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
fqj ,qk,ql

× G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)

D0
ωqj ,ωqj +ωqk,ωqk,ωqk+ωql ,ωql

× G0(ω − ωqk
− ωql

)G0(ω − ωql
). (15)

The self-energy expression including the loops which visit up to five intermediate states is
a bit involved, but is readily obtained along these lines. It reads

6(ω) =
∑
qj

∗
g2

qj

G0(ω − ωqj
)

Dωqj

+
∑
qj ,qk

∗
g2

qj
g2

qk

G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)

D0
ωqj ,ωqj +ωqk,ωqk

+
∑

qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
fqj ,qk,ql

G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)

× G0(ω − ωqj
− ωqk

− ωql
)

×
[

G0(ω − ωqk
− ωql

)G0(ω − ωql
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωql

+ G0(ω − ωqk
− ωql

)G0(ω − ωqk
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqk+ωql ,ωqk

+ G0(ω − ωqj
− ωql

)G0(ω − ωql
)

D0
ωqj ,ωqj +ωqk,ωqj +ωqk+ωql ,ωqj +ωql ,ωql

]
+

∑
qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
fqj ,qk,ql
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× G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)

D0
ωqj ,ωqj +ωqk,ωqk,ωqk+ωql ,ωql

× G0(ω − ωqk
− ωql

)G0(ω − ωql
) + · · · . (16)

The above rules hold for any discrete set ofωj . Supplemented by the corresponding
expansions of the denominators they yield a systematic expansion of the self-energy in
terms ofG0, which is the Fano–Anderson propagator in the absence of any coupling to
the bosons. This method is complicated by the presence of thef -factors and provides
an efficient algorithm only if the potential energy due to the bosons is small compared to
the kinetic energy, and therefore a few terms suffice. In the next section we show that
considerable progress can be achieved in the continuum limitN → ∞.

3.3. Simplified rules for the continuum limit

All the factorsfq1,q2,...,qN
can be replaced by unity forN → ∞. This simplification can

easily be proved by a combinatorial argument, showing that the amplitude of repeatedly
exciting the same boson mode gives a contribution to the total amplitude which is O(1/N ).
On the other hand, consider the last term of equation (6b), namely,

G0(ω − ωq1 − ωq2 − · · · − ωqn
)
∑
q ′

gq ′9(q1, q2, . . . , qn, q
′, ω)

which introduces the new variableq ′ into the equation for

9(q1, q2, . . . , qn, ω).

It is clear thatq ′ appears only as an integration variable; the set{q ′ = q1}U{q ′ =
q2} · · ·U{q ′ = qn} has a vanishing measure in the continuum limit, and contributes nothing.
Thus, as far as the calculation ofG is concerned, we may consider that each mode is excited
at most once.

A further, major simplification can be obtained by a close examination of the expansion.
Feenberg’s method allows us to develop the local Green function as a series of terms. The
denominator of each term is aFeenberg Dwhich may be expanded in the same way,
although the processes (or graphs) occurring in the denominators do not generally start
from |0〉. When eachFeenberg Dis expanded, the whole series is finally written in terms
of continued fractions. We can hope to simplify matters only if there is a simple relationship
between the ‘floors’. We said above that it is possible to classify the loops asarches or
zigzags. All of the terms may be further classified asdominantor dominated. We describe
as dominant the graphs that during their evolution never switch off a boson belonging
the initial state; the others are dominated. Two dominant graphs having different initial
states but visiting the same number of intermediate states give simply related mathematical
contributions; indeed, they can be obtained from each other by a shift due to the different
energies of the bosons of the rising states. Let us explain this property by an example. The
following two dominant loops arise from different initial states and visit one intermediate
state:

(i) |0〉 → |ωq〉 → |0〉 ⇒ G0(ω)G0(ω − ωq)

(ii) |ω1, ω2, . . . , ωN 〉 → |ω1, ω2, . . . , ωN, ωq〉 → |ω1, ω2, . . . , ωN 〉
⇒ G0(ω − ω1 − ω2 − · · · − ωN)G0(ω − ω1 − ω2 − · · · − ωN − ωq).

We can see that (i) and (ii) differ by a shift.
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On the other hand, dominated graphs depend strongly on the initial states and hence
their mathematical contributions are not simply related. Consider the following dominated
loop visiting one intermediate state:

|ω1, ω2, . . . , ωN 〉 → |ω2, ω3, . . . , ωN 〉 → |ω1, ω2, . . . , ωN 〉
⇒ G0(ω − ω1 − ω2 − · · · − ωN)G0(ω − ω2 − ω3 − · · · − ωN).

It is clear that it is not simply related to any loop rising from the|0〉 state, and the dominated
loops are much more difficult to deal with than the dominant ones.

Fortunately, only the dominant graphs remain in the continuum limit. To understand
that we recall the self-energy rules. We have to include ag2

q-factor for each boson which is
switched on in the irreducible process. Since we want to work with a finite total coupling,
that is

∑
q g2

q < ∞, this fact implies thatg2
q becomes infinitesimal in the continuum limit,

g2
q → g(q)2 dq. We get a finite contribution only ifq is summed over. The last of the

self-energy rules prescribes that one has to sum over all of the intermediate states of graphs.
This sum involves integration over all of the modes that are turned on in intermediate states,
but do not belong to the initial state. This is best seen by an example. Consider a dominant
and a dominated loop that both visit one intermediate state. The dominant loop

|ω1, ω2, · · · , ωn〉 → |ω1, ω2, · · · , ωn, ωq〉 → |ω1, ω2, · · · , ωn〉
yields the finite contribution∑

q

g2
qG0(ω − ω1 − ω2 − · · · − ωN)G0(ω − ω1 − ω2 − · · · − ωN − ωq)

−→
N→∞

∫
dq g2(q)G0(ω − ω1 − ω2 − · · · − ωN)

× G0(ω − ω1 − ω2 − · · · − ωN − ωq)

while the dominated loop

|ω1, ω2, ω3, · · · , ωn〉 → |ω2, ω3, · · · , ωn〉 → |ω1, ω2, ω3, · · · , ωn〉
yields

g2
q1

G0(ω − ω1 − ω2 − · · · − ωN)G0(ω − ω2 − · · · − ωN)

−→
N→∞

dq1 g2(q1)G0(ω − ω1 − ω2 − · · · − ωN)

× G0(ω − ω1 − ω2 − · · · − ωN − ωq)

and vanishes forN → ∞. This happens with all dominated loops and so in the continuum
limit their contributions become infinitesimal. Thus, in the continuum limit,

D0
ωj

= 1 −
∑
p

g2
p

G0(ω − ωj)G0(ω − ωj − ωp)

D
0,ωj

ωj +ωp

− · · · . (17)

This D is composed of the same loops asD0 with the difference that the initial states are
shifted byωj . Therefore,D0

ωj
= D0(ω − ωj). In general, everyD with only one low index

is equal toD0 shifted of the energy represented by that index. Using a known property of
the FeenbergD, we obtain

D0
ωj ,ωj +ωk,ωk

= D0
ωj

D
0,ωj

ωj +ωk
D

0,ωj ,ωj +ωk

ωk
→ D0(ω − ωj)D0(ω − ωj − ωk)D0(ω − ωk) (18)
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and6 becomes

6(ω) =
∑
qj

∗
g2

qj

G0(ω − ωqj
)

D0(ω − ωqj
)

+
∑
qj qk

∗
g2

qj
g2

qk

G0(ω − ωqj
)G0(ω − ωqj

− ωqk
)G0(ω − ωqk

)

D0(ω − ωqj
)D0(ω − ωqj

− ωqk
)D0(ω − ωqk

)
+ · · · . (19)

Finally, using

G0(ω)

D0(ω)
= G(ω)

we find

6(ω) =
∑
qj

∗
g2

qj
G(ω − ωqj

)

+
∑
qj qk

∗
g2

qj
g2

qk
G(ω − ωqj

)G(ω − ωqj
− ωqk

)G(ω − ωqk
) + · · · . (20)

The effect of theD-denominators is just to dress the Green function.
In the continuum limit the rules for building the self-energy reduce to the following

simplified set.

(1) For each intermediate state, include a dressed propagator

G

(
ω −

∑
j

ljωj

)
where lj is the occupation of the bosonj in the intermediate state;lj is allowed to be 0
or 1.

(2) Include a factorg2
q for every switched-on boson mode with energyωq .

(3) Sum over all of the indices of the bosons of the intermediate states not belonging
to the initial one.

For example, including all processes that visit up to five intermediate states, we get

6(ω) =
∑
qj

∗
g2

qj
G(ω − ωqj

) +
∑
qj ,qk

∗
g2

qj
g2

qk
G(ω − ωqj

)G(ω − ωqj
− ωqk

)G(ω − ωqk
)

+
∑

qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
G(ω − ωqj

)G(ω − ωqj
− ωqk

)G(ω − ωqj
− ωqk

− ωql
)

× [G(ω − ωql
− ωqk

)G(ω − ωql
) + G(ω − ωqk

− ωql
)G(ω − ωqk

)

+ G(ω − ωqj
− ωql

)G(ω − ωql
)] +

∑
qj ,qk,ql

∗
g2

qj
g2

qk
g2

ql
G(ω − ωqj

)

× G(ω − ωqj
− ωqk

)G(ω − ωqk
)G(ω − ωqk

− ωql
)G(ω − ωql

) (21)

The expansion can be carried out in principle to any desired order and used for a self-
consistent solution together with Dyson’s equation. It is clear that it is much simpler
and more powerful than that of the previous section: we got rid of thef -factors and are
expressing6 in terms of the fully dressedG, rather thanG0.

Equation (21) can also be obtained by more standard diagrammatic methods. The first
term corresponds to the second-order skeleton diagram; the second is the single overlapping
fourth-order diagram and the rest corresponds to the three types of overlapping skeleton
diagram which occur in order six. Thus, if the bosons form one continuum the present
recursion method turns out to be equivalent to self-consistent perturbation theory [10],
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although it has clear advantages if sharp boson modes are also present. We have checked
by direct analytical calculation that the results (21) reproduce the first five denominators of
equation (7) in the appropriate limit (that is, when the continuum is shrunk to a single
frequencyω0); in that case, however, the continued-fraction expression is much more
convenient. Moreover, recursion methods tend to be particularly suitable for numerical
implementation in complex situations where the problem must be handled approximately.

Figure 2. The effects of the boson dispersion forωp = 2a andb = 0.1. Dashed curve: the non-
interacting density of statesρ0 for the triangular band. The other curves yield the interacting
ρ. Solid curve: the dispersionless limit of equation (3); light-dotted curve:1ω = ωp/8;
heavy-dotted curve:1ω = ωp/4; the energies are in units of the band width 2a.

4. Numerical results

We performed many numerical calculations in order to get preliminary physical insight,
and allow for further tests of the above analysis. In particular, we have used the calculated
spectra to check the first moments arising from our theory against exact moments [11]; also,
all of our codes have been routinely checked in the narrow-band limit by comparison with
Langreth’s solution [1]. For illustration, we consider the triangular-shaped electronic band
ρ(0)(ω) = (−1/π)Im G0(ω) arising from

G0(ω) = a−1tan−1

(
2a

p

)
− p

4a2
ln

(
p2 + 4a2

p2

)
(22)

wherea is the half-width andp = 0+ − iω. As an example, we studied the interaction with
a boson continuumω ∈ (ωp, ωp + 1ω) arising from a linear dispersion law

ω(q) = ωp + 1ω
q

qmax
(23)

which could mimic e.g. a surface plasmon field, with cut-off wave vectorqmax. In our test
calculations, the electron–boson coupling is taken in the form

g2
q = b

ω2
p

qmax
(24)
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Figure 3. The effects of the boson dispersion forωp = 3a andb = 0.06. Dashed curve: the
non-interacting density of statesρ0 for the triangular band. The other curves yield the interacting
ρ. Solid curve: the dispersionless limit of equation (3); light-dotted curve:1ω = ωp/8; heavy-
dotted curve:1ω = ωp/4; the energies are in units of the band width 2a.

where b is a constant parameter, and energies are measured in units of the band width
2a. Figure 2 shows the results for the non-interactingρ(0)(ω) (dashed curve) and for the
interactingρ(ω) for ωp = 1, b = 0.1, and three different values for the dispersion width
1ω. In all cases the interaction produces a renormalization and narrowing of the main
peak, and the rise of satellites. The modification of the main line from the triangular shape
is caused by the potential due to the bosons that dynamically screen the electron when it
sits at sitea: the renormalized site is more attractive for the electron, and this causes a
narrowing. The line shape of the main peak weakly depends on1ω; the satellite shape is
much more sensitive to the width of the boson continuum. In the dispersionless limit of
equation (3) (1ω → 0) the first satellite looks very much like a reduced copy of the main
peak; with increasing boson dispersion in energy, it gets increasingly broadened, since there
is uncertainty about the energy of the boson wave packet involved. This trend is confirmed
by the data of figure 3, that refer to a somewhat smallerb and a largerωp. Comparing the
two cases we notice that the influence of1ω on the shape of the satellite is somewhat more
marked in figure 2. This may be easily interpreted. In figure 3 the boson modes are fast
compared with the electronic degrees of freedom, while in figure 2, whereω0 = 2a, there
is more competition between screening and band motion, and the fact that some modes are
faster than others has a marked influence on the dynamics.

5. Conclusions

The outcome of the present method is a viable algorithm for computing exact solutions to
problems involving an electronic continuum interacting with a boson one. The possibility of
dealing with boson dispersion in frequency removes an important shortcoming of the method
of excitation amplitudes and widens its scope in the various fields to which it has been
applied to date. Various applications to electron spectroscopies and non-linear optics may
be anticipated. The method of excitation amplitudes has already been applied successfully
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to finite temperatures [4, 12, 13], and a similar extension of the present treatment is clearly
feasible: one has to apply Feenberg’s method to the solution of the finite-temperature
recurrence relations.

The fact that only fully dressed propagators occur in our expressions ensures a much
faster convergence than is possible otherwise. The explicit expression (21) for the self-
energy truncated to five intermediate states should already be adequate for many applications,
although we can continue the expansion when this is needed.

The above test calculations show that the effect of boson dispersion broadens and lowers
the satellites, leaving the principal peak almost unaltered. The effects of dispersion are
particularly important when the onset of the continuum is at low energies.

Appendix 1. The Feenberg method

Selecting an arbitrary integeri ∈ (1, M), det(A) is given by the Laplace expansion

A =
∑

j

(−1)i+j aijA
ij (A1)

whereAij is the determinant obtained by removing theith row and thej th column from
A. With the definitions surrounding equation (9) in the text, it is not difficult to prove the
less well known, but equivalent Feenberg expansion

A = aiiAi −
∑

j

∗
aij ajiAij +

∑
ij

∗
aij ajkakiAijk −

∑
ijkl

∗
aij ajkaklaliAijkl + · · · . (A2)

Like Laplace’s, this is also a recursion formula, and the smaller determinants can be
expanded in a similar way: for instance,

Auv = aiiAiuv −
∑

j

∗
aij ajiAijuv +

∑
j

∗∑
k

∗
aij ajkakiAijkuv

−
∑

l

∗∑
k

∗∑
j

∗
aij ajkaklaliAijkluv + · · · . (A3)

Comparing (A1) and (A2), one finds

Aij = −(−1)i+j

[
ajiAij −

∑
k

∗
ajkakiAijk +

∑
l

∗∑
k

∗
ajkaklaliAijkl − · · ·

]
. (A4)

Thus we can insert the above results into the solution of any well-posed linear system
Ax = b, which is given by Cramer’s formula

xi =
N∑
j

(−1)i+j bj

Aji

A
. (A5)

The algorithm can be cast in a convenient continued-fraction form, by defining the Feenberg
D-ratios:

Di = A

Ai

Dij = A

Aij

Di
j = Ai

Aij

Di
jk = Ai

Aijk

Dil
jk = Ail

Aijkl

and the like, whereby (A5) becomes equation (9). The FeenbergD-ratios can be expanded.
From (A2) one obtains

Di = A

Ai

= aii −
∑

j

∗ aij ajiAij

Ai

+
∑

j

∗∑
k

∗
aij ajkaki

Aijk

Ai
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−
∑

l

∗∑
k

∗∑
j

∗
aij ajkaklali

Aijkl

Ai

+ · · ·

= aii −
∑

j

∗ aij aji

Di
j

+
∑

j

∗∑
k

∗ aij ajkaki

Di
jk

−
∑

l

∗∑
k

∗∑
j

∗ aij ajkaklali

Di
jkl

+ · · · .

D-denominators with several low indices can be expressed in terms of those with one; for
instance (equation (18) is another example of that)

Dij = A

Aij

= A

Ai

Ai

Aij

= DiD
i
j = DjD

j

i .

High indices just reduce the sizes of the determinants, and in view of (A3) we can write

Duv
i = aii −

∑
j

∗ aij aji

Duvi
j

+
∑

j

∗∑
k

∗ aij ajkaki

Duvi
jk

−
∑

l

∗∑
k

∗∑
j

∗ aij ajkaklali

Duvi
jkl

+ · · · . (A6)

Each term in these restricted summations
∑∗ can be thought of as an ‘irreducible process’

taking us fromi to several intermediate ‘states’j, k, . . ., and back toi. The ‘states’ must
be different from each other and from any other index appearing in the summand. Thus,
the rules for writing down the contribution from each irreducible process to a givenD can
be read off from equation (A6).
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